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ABSTRACT: In this report, we examine the extensive research
landscape of CRISPR with an emphasis on CRISPR therapeutics
and showcase our results from an in-depth analysis of the most up-
to-date scientific information consisting of more than 53,000
publications encompassing academic journal articles and patents,
spanning nearly three decades, extracted from the CAS Content
Collection. Our analysis indicates that cancer and infectious
diseases are the most explored in the context of CRISPR. Identified
gene targets associated with CRISPR-related publications are led
by TPS3, c-myc, and hemoglobin beta subunit (HBB). Among the
many delivery methods, adeno-associated vectors (AAVs) appear
to be highly explored. With >140 CRISPR-based therapeutics in
the clinical development pipeline and billions of dollars in
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investment, the field of CRISPR continues to evolve rapidly. We also briefly discuss the ethical implications of CRISPR
technology. While some fundamental challenges persist, the future of CRISPR is undoubtedly bright.
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B INTRODUCTION

Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR) and CRISPR-associated proteins (Cas) have
revolutionized the field of genetic engineering and therapeutic
development.' ™ Originally discovered as an adaptive immune
mechanism in bacteria, CRISPR/Cas systems have been
harnessed to enable precise and efficient genome editing in a
variety of organisms.”~’ This powerful technology offers
unprecedented opportunities for advancing our understanding
of genetic diseases, developing novel therapies, and potentially
curing previously intractable conditions.

CRISPR/Cas systems were first identified in bacteria and
archaea as a defense mechanism against viral infections.”” The
system works by capturing snippets of DNA from invading
viruses and storing them in the bacterial genome. When the
same virus attacks again, the bacteria produce RNA segments
from the CRISPR sequences to target the viral DNA, guided by
the Cas proteins, which then cut the DNA, neutralizing the
threat.

This natural mechanism has been adapted for use in gene
editing.l’10 The most commonly used system, CRISPR/Cas9,
involves a guide RNA (gRNA) that matches the target DNA
sequence and the Cas9 enzyme, which acts as molecular scissors
to cut the DNA at the desired location. This break in the DNA
can then be repaired by the cell’s natural repair mechanisms,
allowing for the insertion, deletion, or modification of genes.1 L1
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Since its adaptation for gene editing, CRISPR technology has
rapidly advanced. Researchers have developed various mod-
ifications of the original CRISPR/Cas9 system to improve
specificity, efficiency, and versatility. For example, CRISPR/
Casl2 and CRISPR/Casl3 target different nucleic acids,
expanding the range of possible applications.'”~'* Base editing
techniques allow for precise conversion of single DNA bases
without introducing double-strand breaks, reducing the risk of
unwanted mutations.'"” Prime editing represents a more
recent advancement that combines aspects of CRISPR and
reverse transcriptase to directly write new genetic information
into a DNA site without causing double-strand breaks."®"’

The potential therapeutic applications of CRISPR are vast and
encompass a wide range of diseases. Monogenic disorders, i.e.,
diseases caused by mutations in a single gene, such as sickle cell
anemia, cystic fibrosis, and Duchenne muscular dystrophy, are
prime targets for CRISPR-based therapies. Early clinical trials
have shown promise in correcting these genetic defects.”””!
CRISPR is also being explored to enhance cancer immunother-
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Figure 1. (A) Total number of journal and patent publications and (B) patent and journal publications through the years for the field of CRISPR
including CRISPR therapeutics from 1995 to 2024. *Note that data for 2024 is incomplete due to time of data extraction and encompasses data for

January to June.
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Figure 2. Leading scientific journals in the field of CRISPR based on research output (number of journal publications) and impact (average number of
citations per publication) data from the CAS Content Collection for the period 1995—2024. Note that data for 2024 is incomplete due to time of data

extraction and encompasses data for January to June.

apy by editing immune cells to better recognize and attack
cancer cells. It is also being used to identify and validate new
drug targets.”””>* CRISPR has potential applications in
combating viral infections, such as HIV, by targeting and
disabling viral DNA within the host genome.”> ™’

The future of CRISPR therapeutics is bright, with ongoing
research aimed at overcoming current limitations and expanding
its applications. Innovations such as CRISPR-based diagnos-
tics,”®*” CRISPRa/i (CRISPR activation/interference for gene
regulation),”””" and combination therapies hold promise for
broadening the impact of this technology. CRISPR therapeutics
represent a transformative advance in medical science, offering
the potential to treat and even cure a wide array of diseases. As
research progresses and challenges are addressed, CRISPR-
based therapies are poised to become a cornerstone of precision
medicine, revolutionizing how we approach genetic disorders
and complex diseases.

In this paper, we give an overview of the research progress in
CRISPR therapeutics by analyzing data from the CAS Content
Collection,*” the largest human-curated collection of published
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scientific information, supporting comprehensive quantitative
analysis of global research across parameters including time,
geography, scientific discipline, application, disease, chemical
composition, etc. Relying on the expertise and knowledge of our
subject matter experts, we have analyzed the corpus of CRISPR-
related publications to identify and highlight interesting trends
in terms of protein targets often targeted using CRISPR, the co-
occurrences between diseases and protein targets, prevalence of
different CRISPR/Cas proteins, and leading commercial and
noncommercial entities engaged in research related to CRISPR.
Finally, we inspect clinical applications of CRISPR therapeutics
and diagnostics with details of their development. The objective
of this review is to provide a broad overview of the evolving
landscape of current knowledge regarding CRISPR application
in therapeutics and diagnostics, to outline challenges that lie
ahead and evaluate growth opportunities to further efforts in this
groundbreaking technology.

To fully understand CRISPR, it is essential to break down its
components and the mechanism of its natural function in
prokaryotes in order to exploit CRISPR to achieve genome

https://doi.org/10.1021/acs.biochem.5c00480
Biochemistry 2025, 64, 4628—4660


https://pubs.acs.org/doi/10.1021/acs.biochem.5c00480?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.5c00480?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.5c00480?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.5c00480?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.5c00480?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.5c00480?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.5c00480?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.5c00480?fig=fig2&ref=pdf
pubs.acs.org/biochemistry?ref=pdf
https://doi.org/10.1021/acs.biochem.5c00480?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Biochemistry

pubs.acs.org/biochemistry

REVIEY

8004

6004

4004

Number of journal publications

2004

Il Number of journal publications (United States) 7250

Number of journal publications (Germany)
Number of journal publications (South Korea)
Number of journal publications (France)
B Number of journal publications (Canada)
Number of journal publications (New Zealand)
-®- Average number of citations per publication

200

+ 150

100

uonesignd Jad suoneyd Jo Jaquinu abeiaAy

0_
\ R B 3 ; 9 ; < < ;
RO - S I I N B P N SRS
Q ) A O 3 N 5 3 A S [ S 5 N
& R & © » & 4 > S P’ R
'&‘z‘ \)(\\ 0&‘\ \0’0 0(‘\ 410\ 0(‘ @4\ 0(‘\ \>\'Q C?’k 6\ \)(\\ *0\
. N N Ny B\
z‘\q} ééb @\Q} N ()5& & é@@) @ & & & & {beq &
& & @ & 3 2 % > O S 3
2 ARG NN & & ¥
& AN & & @
'bé\ e‘@ @ o
& & %\Olb
NG N N
N o’&
@Q’é\

Research organizations

Figure 3. Leading research organizations in the field of CRISPR based on journal publication and citation data from the CAS Content Collection for
the period 1995—2024. Note that data for 2024 is incomplete due to time of data extraction and encompasses data for January to June.

editing capabilities in humans and other organisms. Please see
the Supporting Information for CRISPR/Cas biology and
mechanism (Figure S1) and the types of CRISPR/Cas systems
(Figure S2 and Table S1).

B GENERAL TRENDS IN CRISPR RESEARCH:
INSIGHTS FROM THE CAS CONTENT COLLECTION

Querying the CAS Content Collection for publications related
to CRISPR and its role in therapeutic treatment, therapeutic
development, and therapeutic discovery (shortened to CRISPR
therapeutics in this manuscript), while filtering out all
agriculture related documents (see the methods section for
query and details), resulted in over 39,000 academic journal
articles and over 14,000 patents spanning from 1995 to June
2024. Publications on this topic sharply rose in 2008 and have
steadily increased ever since with an average growth rate of 54%
in the past decade (2014—2023) (Figure 1). This total rise in
publications is primarily led by academic journal articles;
however, patents showed a larger average yearly growth rate of
72% in the past decade when compared to journals (50%),
demonstrating an increase in commercial interest.

We identified the top 100 journals containing the largest
number of CRISPR therapeutics publications between 1995 and
2024. We then filtered out of this set the journals with the
highest average citation per publication to provide data for
Figure 2. The journal Science, with 262 publications, has the
highest average citation (253 citations/publication) out of the
top 100 journals by total publication (Figure 2). Topics of
recently published and highly cited articles from this journal
explore the following: the use of CRISPR/Cas9 screens to
identify genes that could protect against copper-induced cell
killing;** the development of astrocyte-specific CRISPR/Cas9-
based gene knockdown to reduce the expression of astrocyte
morphology genes related to Alzheimer’s disease risk and other
central nervous systems disorders;** and the combination of
fluorescence image-enabled cell sorting with CRISPR-pooled
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screens to identify regulators of the nuclear factor kB (NF-xB)
pathwggy, quickly completing genome-wide image-based screens
(9h).”

Cell, the most known and oldest journal under Cell Press,
comes in second place when it comes to citations with 220
citations/publications and 258 publications. Two recent
publications in this journal with a high number of citations
discuss the development and application of engineered DNA-
free virus-like particles that efliciently package and deliver base
editor or Cas9 ribonucleoproteins in vivo by overcoming cargo
packaging, release, and localization bottlenecks®® and the use of
genome-scale Perturb-seq targeting all expressed genes with
CRISPRI across >2.5 million human cells for the generation of
information-rich genotype—phenotype maps.”’

Out of the top 15 journals shown in Figure 2, seven are owned
by Springer Nature. The journals Nature Biotechnology, with a
total of 353 publications, and Nature, with a total of 486
publications, come in third and fourth places with 161 citations/
publication and 124 citations/publication, respectively. In
addition, our data also shows that Nature Communications is
the journal with the most publications on the topic of CRISPR
therapeutics with 1,220 publications (Figure S6). Examples of
publications from Nature Biotechnology cover topics like the
design of an optimized Un1Cas12fl and its application as a
miniature CRISPR system that fits into the adeno-associated
virus,*® new technologies to address challenges and allow
biologically targeted mRNA therapeutics,” and a prime editing-
based method that achieves higher precision than CRISPR—
Cas9 and sgRNA pairs in programming genomic deletions."*’
Some examples of recent highly cited publications from the
journal Nature report the use of CRISPR to conduct a genome-
wide CRISPR knockout screen in glioblastoma to systematically
identify potential resistance pathways to CAR-T cell cytotoxicity
in solid tumors,*' the use of CRISPR-mediated targeting to
identify mediators of Hopx induction (a transcriptional
regulator) by f-hydroxybutyrate (BHB) and identify a BHB-
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triggered pathway regulating intestinal tumorigenesis,”” and
provide molecular insight into the underlying structural
mechanisms that cause off-target effects of Cas9 and a proof
of concept for the design of Cas9 variants that reduce off-target
DNA cleavage while retaining efficient cleavage of on-target
DNA.*

We then looked at which organizations are leading academic
research in the field of CRISPR therapeutics. If only taking into
consideration the number of publications (Figure S7), the
University of California, the Chinese Academy of Sciences, and
Harvard University take the lead. Combination of research
output (number of journal publications) and its impact (average
citation per publication) reveals a different list (Figure 3) with
Massachusetts General Hospital, Massachusetts Institute of
Technology (MIT) and Harvard University as the leaders.
Analyzing the geographical distribution of these leading
organizations indicate that a majority of them originate in the
United States (Figure 3).

Taking alook into recent publications from the Massachusetts
General Hospital, we observed the use of CRISPR: as a
screening strategy to connect genes to detailed bioenergetic
phenotypes in mitochondrias;*" to elucidate how Galectin 3
(Gal3) contributes to uterine serous carcinoma by using
CRISPR/Cas9-mediated Gal3-knockout (KO) alongside a
Gal3 inhibitor to evaluate Gal3’s impact on cell function;*
and to target PMSI to reduce somatic expansion of the
Huntington’s disease-associated CAG repeat.”® Examples of
recent publications by MIT discuss using Cas9-assisted
biological containment of a genetically engineered human
commensal bacterium that could be used as a way to bring
genetically modified microorganisms into biomedicine in a safe
manner,”” and to examine effects of several simultaneous gene
expression perturbations on growth using an Escherichia coli
model.”® Finally, recent publications from Harvard University
report the use of CRISPR technology: for germline mutagenesis
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to achieve genetic sterilization of male Anopheles gambiae, a
species of malaria-carrying mosquitoes;" to reveal a druggable
pocket in STT3A, a subunit of oligosaccharyltransferase
complex OST-A, whose inhibition blocks lipopolysaccharide
signaling to NF-xB %% to investigate the role of the progesterone
receptor membrane component 1 (PGRMC1) in progesterone
signaling at the maternal—fetal interface by knocking out
PGRMCI in JEG3 cells;’" and the use of CRISPR-corrected
isogenic controls in research on human induced pluripotent
stem cell lines.>

A look at patents in the field of CRISPR therapeutics, both
submitted and approved patents, separated into commercial and
noncommercial entities, are shown in Figures 4 and §,
respectively. When it comes to commercial assignees,
Regeneron Pharmaceuticals in the U.S., CRISPR Therapeutics
from Switzerland, and Shandong Shunfeng Biotechnology in
China emerge as leaders among other key players. Overall, we
observe that a majority (10 out of 15) commercial assignees
among the top 15 are located in the U.S. Unlike commercial
patents, Chinese and American academic and research
institutions have a closer ratio (9:6, respectively) of dominance.
For discussion of patent activity data in the field of CRISPR
therapeutics please, see the Supporting Information (Figure S3).

A more detailed look into the top three commercial assignees
and their recent submitted patents was merited. Regeneron
Pharmaceuticals, an American biotechnology company, has
recently published various patents on the use of CRISPR for the
identification and treatment of liver disease,”* > as therapeutics
for c9orf72 repeat expansion disease,”””** and for the treatment
of ophthalmic diseases®”*” and metabolic disorders.””*> Some
other examples of recent patents include a CRISPR SAM
biosensor cell line and their methods of use,®* and CRISPR/Cas
methods and compositions for knocking out a CS locus or
gene.”* The Swiss—American biotechnology company, CRISPR
Therapeutics, is known for its collaboration with Vertex
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Pharmaceuticals in creating the first-ever approved CRISPR/
Cas9 gene-edited therapy known as CASGEVY.” CASGEVY,
also known as exagamglogene autotemcel, is a one-time therapy
for sickle cell disease and f-thalassemia.”® Recent patents by
CRISPR Therapeutics include the use of CRISPR for
producing: CAR-T cells,”” 7" genetically engineered immune
cells,”' ™7 methods for differentiating stem cells into NK
cells, and for in vivo editing of stem cells.”” Finally,
Shandong Shunfeng Biotechnology, recently known for the
development of the first gene-edited crop (soybean) approved
by China, also ranks high among commercial patent assignees/
entities.”” Some of their recent patents demonstrate various
novel CRISPR/Cas systems and enzymes for targeting, editing,
detecting mutations in, and cleaving nucleic acids.*'~*® They
have also recently published patents on efficient methods for
detection of viruses®” based on CRISPR, including foot and
mouth disease®”*” and African swine fever.”’

A deeper look into recent patent publications from the leading
noncommercial assignees (Figure 5) reveal the following:

77,78

1. The Chinese Academy of Sciences, a group of 124
individual research institutions,”" is a distinct leader with
respect to the number of published patents in the field of
CRISPR. A portion of their recent publications appear to
be focused on use of CRISPR/Cas13 systems for targetin
and treating diseases, such as SOD1-associated,”>’
UBE3a-associated,”* DMD-associated,”> and MECP2-
associated”® diseases, nucleic acid detection based on
CRISPR/Cas13a.” ™

. The Broad Institute of MIT and Harvard, a biomedical
and genomic research organization in Massachusetts, has
recentlgf patented CRISPR-associated transposase sys-
tems,'°7'%® CRISPR/Cas systems for gene editing
mitochondria,'**'% and preparation of CRISPR/Cas
systems comprising of adenine base editors,"’° small
novel Type V Cas polypeptides,'”” and novel Cass-HNH
and Cas8-HNH polypeptides.'*®

. The University of California, who as previously
mentioned has the highest amount of journal publica-
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tions, comes in third place when it comes to patents from
noncommercial institutions. Some examples of recent
patents discuss CRISPR/Cas effector proteins'”” and
polypeptides''”""" for gene editing, the use of CRISPR/
Cas systems for modifying eukaryotic cells''” and
oocytes,'"” and CRISPR/Cas-mediated RNA targeting
for treating Huntington’s disease'"*

In the past decade, capital investment in the field of CRISPR
technology has seen a remarkable increase with a sharp increase
starting in 2018 and persisting until 2021 with investments
exceeding a staggering USD 11 billion in 2021 (Figure S4A;
PitchBook Data, Inc; *Data has not been reviewed by
PitchBook analysts.). An overwhelming majority of these
investments involved companies originating in the United
States (USA, 96%). Other key players in terms of geographical
distribution, though of much smaller magnitude, included
Switzerland (CHE), China (CHN), and Japan (JPN) (Figure
S4B). For more information about commercial interest in
CRISPR, please see the Supporting Information.

With the recent and ongoing surge in artificial intelligence
(AI) and its application in a wide range of fields, interest in using
Al in CRISPR has also seen an increase as exhibited by the
growth in publications over the past decade (Figure SS). For a
brief description of some of the AI models developed for
CRISPR, please refer to Supporting Information.

B CRISPR THERAPEUTICS

The concept of gene therapy was introduced by Friedmann and
Roblin back in 1972.''* ZEN (zinc finger nucleases) and
TALEN (transcription activator-like effector nucleases) were
then developed as mainstream tools to evaluate the possibility of
targeting or editing genes to cure diseases. Both these methods
require complex design strategies and can tolerate only a small
number of positional mismatches making development of
successful and effective gene therapy challenging. With ZFN,
it is difficult to target nonguanine (G)-rich sites, and for each
TALEN monomer, S’ targeted base must be a thymine
(T).""""? Later, CRISPR/Cas emerged as a new tool to edit
genes, and since its discovery, it has been explored tremendously
by researchers as a potential therapeutic approach for disorders,
which were previously thought to be incurable or difficult to
cure. These include certain types of cancers, infectious diseases,
and various genetic disorders, among others. CRISPR/CAS is
beneficial over earlier conventional gene therapy methods such
as ZFN and TALENS as it is easy to engineer and can tolerate
positional/multiple consecutive mismatches.'*’

CRISPR/Cas technology has various key applications in the
field of therapeutics, the most apparent of which would be to
correct or replace the mutated or disease-causing gene(s).
CRISPR/Cas-based gene therapy can be delivered in two
modes—in vivo and ex vivo. For the in vivo approach, any viral or
nonviral vector with the packaged CRISPR/Cas system is
injected directly into the patient’s body, whereas, for the ex vivo
approach, cells are first extracted from the patient, followed by
growing them in the laboratory setup where the gene editing
process is carried out and eventually the genetically altered cells
are injected back into the patient’s body.'*'

Apart from the therapeutic application, CRISPR/Cas is often
used in the functional genomics field to identify gene targets
associated with certain diseases. Researchers can create gRNA
libraries that target different genes in cell lines or animals and can
further note the disruptions leading to phenotypic changes. This
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Figure 6. Publication frequencies of potential gene targets occurring in the CRISPR data set retrieved from the CAS Content Collection. Data includes
patent and journal publications for the period 1995—2024 and is based on CAS indexing. Note that data for 2024 is incomplete due to time of data

extraction and encompasses data for January to June.

allows identification of candidate target genes involved in
disease mechanism as well as potential therapeutic targets.
CRISPR also enables high-throughput screening of genes in a
fast and efficient manner. It is possible to establish experiments
using pooled CRISPR libraries to screen thousands of genes
simultaneously to discover their functions and understand their
effects on various biological and pathological processes. Such
high-throughput libraries are being constructed and explored
particularly in cancers paving the way of using CRISPR in
personalized medicine.'”” Furthermore, CRISPR can also be
used to create animal models for many diseases, helping
researchers understand the molecular mechanisms of those
diseases and eventually serving as an excellent tool during early
stage drug discovery by enabling identification of therapeutic
targets.123

As of today, numerous CRISPR-based therapeutics are in the
preclinical stage of development, and many are undergoing
clinical trials to validate their safety and efficacy for diverse
disease conditions, as discussed further in this article (CRISPR
Therapeutics: Candidates in the Developmental Pipeline). In
December 2023, the first CRISPR/Cas9-based gene editing
therapy got approval by the U.S. Food and Drug Administration
(FDA) for the treatment of patients with transfusion-dependent
f-thalassemia. The same therapy was approved in Europe in
November 2023 for sickle cell disease and transfusion-
dependent f-thalassemia.'”” "%’

To gain insight and to understand the current trend in
CRISPR therapeutics research, we explored the data from the
CAS Content Collection and performed a quantitative analysis.
Highlighted in Figure 6 are potential gene targets with the
highest publication frequency in the CRISPR data set (journals
and patents from 1995 to 2024). TPS3, c-myc, and hemoglobin
beta subunit (HBB) genes were the top three occurring genes
identified. It is important to note that while TPS3 is the most
frequently mentioned gene in our data set, it is not always
referenced specifically as a CRISPR target. As per Figure 7, the
publication trend for genes such as c-myc, HBB, and CDKN2A
show a steady increase while TP53 has shown a rapid increase
over the past few years.

As shown in Figure 8A, a majority of publications appear to be
focused on cancer (35% of all journal articles and 24% of all
patents explicitly mentioning diseases), followed by infectious
diseases (25% and 22% of journal articles and patents explicitly
mentioning diseases, respectively). Time trends of these diseases
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Figure 7. Time trends of some of the most highly occurring potential
gene targets in the CRISPR data set retrieved from the CAS Content
Collection. Data includes patent and journal publications for the period
2014-2023 and is based on CAS indexing.

also show remarkable and consistent increase in number of
CRISPR articles focused on cancer and infectious diseases after
2016 (Figure 8B and 8C). Other broader categories of disease
conditions observed in the data set were blood disorders, genetic
disorders, nervous system disorders, cardiovascular diseases,
respiratory diseases, immune diseases and metabolic disorders.
In the following section we have discussed briefly how CRISPR/
Cas technology is being utilized in the therapy targeted for these
diseases with an emphasis on cancer, infectious diseases, blood
disorders, genetic disorders (common as well as rare) and
nervous system disorders.

Cancer. Cancer is a multifaceted disease involving changes at
the genomic, cellular, and eventually at the organismic level.
Fundamentally, cancer originates in the genome, by mutations
that either activate oncogenes or inactivate tumor suppressors.
Dysregulation of the epigenome is another feasible way by which
cells can become cancerous due to altered expression of certain
genes involved in the DNA damage pathway or cell cycle
pathway. At the cellular level, cancer results in altered
metabolism, altered cell structure, and migration, which enables
growth of cancer cells in unfavorable environments. Eventually,
in the affected organism, cancer cells circumvent the immune
defense mechanism of the host and coexist with normal cells.
Understanding of all these complex genomic, cellular, and tissue
level changes is crucial for the development of more effective
treatment options and improving outcomes in cancer patients.
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Figure 8. (A) Distribution and time trends for CRISPR (B) journal
publications and (C) patents co-occurring with various disease
conditions. Data includes journal and patent publications from the
CAS Content Collection for the period 2011-2023.

CRISPR/Cas technology has had a significant impact on our
understanding of cancer biology and is continuously driving new
discoveries in the field.'”’

Supplementary Figure S8 shows the publication trend of
CRISPR-related publications—journals and patents for differ-
ent cancers subtypes (both solid cancer and hematological
malignancies). Increase in journal publications was most evident
for breast cancer, acute myeloid leukemia (AML), liver, lung,
and rectal cancer. In line with the journal publications, patent
publication trends show breast cancer, AML, and lung and liver
cancer-related patents to be growing rapidly indicating
potentially more commercialization efforts for these cancer
types. Melanoma also shows a rapid increase in co-occurrence
with CRISPR publications around 2022. Multiple gene
candidates are being studied for cancers in the context of
CRISPR, and Figure 9 shows co-occurrences between specific
cancer types and genes found in the CRISPR data set retrieved
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Figure 9. Co-occurrence of cancer subtypes (left column) with genes
(right column) in the CRISPR data set retrieved from the CAS Content
Collection. Data includes patent and journal publications for the period
1995—2024. Note that data for 2024 is incomplete due to time of data
extraction and encompasses data for January to June.

from CAS Content Collection. A few key observations from this
co-occurrence analysis are as follows:

1. Cancers such as breast, lung, rectal, prostate, and liver
appear to co-occur more frequently with certain genetic
targets than others.

2. Out of the more than 25 targets co-occurring frequently,
~10 of them co-occur with more than one cancer type.

3. Besides TPS3, other highly co-occurring genes include c-
K;-Ras (KRAS), c-myc, ERBBI, and BRCAI.

In terms of diversity of genes co-occurring, breast, lung, rectal,
and prostate cancers lead the way.

There are several approaches of using CRISPR/Cas
technology in cancer therapy as discussed in the following.

Correcting Driver Mutations in Oncogenes or Tumor-
Suppressor Genes. Oncogenes and tumor-suppressor genes
play a critical role in the process of tumorigenesis. There are
known driver mutations that either activate oncogenes or
suppress tumor-suppressor genes, and both these phenomena
disrupt the normal growth signaling pathways in cells, making
them grow uncontrollably. Several studies have shown that by
using CRISPR, it is possible to edit these mutations and revert
the cancerous phenotype in vitro as well as in vivo.

Kim et al.'*® used CRISPR/Cas9-mediated gene editing to
target mutations in KRAS oncogene (KRAS G12C, G12D, and
G12 V) in pancreatic cancer cells in mice and found that it
inhibited cancer cell proliferation without affecting wild-type
(WT) cells. In other studies, CRISPR/Cas9 was used to knock
out another mutant oncogene, epidermal growth factor receptor
(EGFR), resulting in the inhibition of proliferation of lung
adenocarcinoma cell lines and considerable decline in tumor size
and weight in xenograft mouse models.'**'*°

The TP53 gene codes for a transcription factor and a well-
known tumor suppressor that regulates multitude intracellular
pathways involved in DNA damage repair, cell cycle arrest,
apoptosis, and senescence.'*""** Mutations in TP53 leading to
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its inactivation are involved in tumorigenesis and are found to be
prevalent in more than 50% of human primary tumors."*
Majority of TPS3 mutations are missense mutations (around
80%) occurring due to guanine (G) to adenine (A) transitions,
followed by cytosine (C) to thymine (T) transitions. These are
clustered in the central DNA-binding region consisting of exons
3—S5. Other known TPS$3 mutations are truncating mutations,
in-frame mutations, and slice site alterations. Since majority of
mutations are missense, it opens great opportunities for the
CRISPR/Cas9 system to correct single nucleotides.'**"**

In prostate cancer cell lines, the TPS3 414delC mutation was
corrected to the wild-type TPS3 genotype by using the
CRISPR/Cas9 system, thereby promoting apoptosis and
preventing tumor proliferation.'*”

Zhan et al."*® have designed and constructed a genetic sensor
that specifically detects WT-p53 expression in cells. Further-
more, by combining the pS3 sensor with diphtheria toxin using
the CRISPR/Cas9 system, they were able to specifically kill p$3-
deficient tumor cells.

Chira et al."*” proposed a novel and highly tumor-specific
TP353 delivery system based on CRISPR/Cas9 genome editing
technology, which can be used to replace the mutant TP53 in the
tumor genome with a functional copy by homologous
recombination, leading to sustained expression of pS3 protein
and tumor regression.

Modifying or Silencing Epigenetic Markers. The epigenome
is a complex framework through which precise gene expression
takes place and is one of the key regulators of cell fate, certain
diseases, and aging. Editing the epigenome is a promising
therapeutic approach in cancer.'”® For epigenome editing, a
“dead” Cas9 protein (dCas9) is used that lacks nuclease activity,
and it is placed alongside an epigenetic effector domain. Based
on fusion ?artners of dCas9, an exact epigenetic status can be
achieved."”’

Granulin (GRN), a growth factor and a potent pluripotent
mitogen that promotes cancer progression by maintaining self-
renewal of hepatic stem cancer cells, is upregulated in hepatoma
tissues and is associated with decreased tumor survival. Wang et
al. synthesized a set of dCas9 epi-suppressors to target GRN by
tethering the C terminus of dCas9 with three epigenetic
suppressor genes: DNMT3a (DNA methyltransferase), EZH2
(histone 3 lysine 27 methyltransferase), and KRAB (the
Kriippel-associated box transcriptional repression domain).
The epigenetic knockdown of GRN (by altering promoter
methylation status) led to the inhibition of cell proliferation,
decreased tumor sphere formation, and reduced cell invasion.*’

The mutated transcription factor FOXA1I acts as an oncogene
and is responsible for the onset and progression of prostate
cancer. Zhou et al.'*" identified a group of six cis-regulatory
elements in the FOXAI regulatory plexus containing somatic
single-nucleotide variants in primary prostate tumors. Deletion
and repression of these cis-regulatory elements with the help of
CRISPR/Cas technology significantly decreases FOXAI ex-
pression and prostate cancer growth.

Furthermore, CRISPR/Cas9-based epigenome editing was
shown to successfully repress interleukin receptors (ILIR1) and
tumor necrosis factor a receptor (TNFRI) in human adipose-
derived stem cells and ovarian cancer cells, respectively.'**'*
This approach may be used to control various kinds of
inflammations that accelerate the growth of diverse types of
cancers.

Assisting in Cancer Immunotherapy. Cancer immunother-
apy, or immuno-oncology, is an approach to treat cancer by
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stimulating the body’s immune system to combat cancer cells.
The major categories of immunotherapy include cytokine
therapies, cancer vaccines, oncolytic virus therapies, immune
checkpoint inhibitors, and adoptive cell transfer—which
includes chimeric antigen receptor-T (CAR-T) cell therapy
and natural killer (NK) cell therapy.'** One of the most
promising applications of CRISPR/Cas9-mediated genome
editing is the generation of CAR-T cells. In general, autologous
T cells are collected and genetically engineered to attack cancer
antigens ex vivo and subsequently transferred back into the
patient. Zych et al. reported that the CRISPR/Cas9 system
could be able to improve CAR-T cell function via interrupting
the genes that code T cell inhibitory receptors or signaling
molecules.'*

CRISPR/Cas9 can also be used to create allogenic CAR-T
cells, which can overcome mismatch of HLA typing a major
limitation of autologous CAR-T cells."*® Various studies have
attempted to create allogenic CAR-T cells by knocking out
genes like beta-2 microglobulin (B2M), T cell receptor a subunit
constant (TRAC), and programmed death 1 (PD-1).1#7148
Using such an approach, it might be possible to create universal
CAR-T cells derived from healthy donors that can be used for
multiple patients helping tremendously to reduce the overall
cost and time required to generate CAR-T based cell therapies.
Table 1 elaborates various applications of using CRISPR/Cas9
system in CAR-T cell therapy.

Targeting Mutations that Determine Drug Response or
Susceptibility. Cancer cells can acquire resistance to targeted
drugs or chemotherapy drugs by several mechanisms. Several
mutations, mainly pathogenic single-nucleotide polymorphisms
(SNPs), are known to develop during the course of therapy
conferring resistance to cancer cells. One such example is the
T315I mutation in the BCR-ABL kinase domain (threonine is
substituted by isoleucine), which confers resistance against
imatinib, a tyrosine kinase inhibitor used in treatment of BCR-
ABL-positive hematological cancers. At the protein level, the
mutation T315] results in a loss of a hydrogen bond, which is
necessary for the binding of imatinib to the ATP-binding site of
BCR-ABL, leading to significant reduction in efficacy of the
drug."®” CRISPR-based editing offers a novel approach to
silence such mutations and thereby restore drug efficacy.

EGFR T790M and TP53 R273H mutations are associated
with gefitinib (a tyrosine kinase inhibitor) resistance in lung
cancer patients. Yoon et al. showed that co-delivery of the
adenine base editor (ABE) and EGFR- and TPS53-SNP specific
sgRNA via adenovirus resulted in accurate correction of the
oncogenic mutations with high efficiency in vitro and in vivo.
There was increased drug sensitivity and improved suppression
of abnormal tumor growth in cells with altered EGFR and TPS53
mutations as compared to control cells.'*’

In breast cancer cells, studies have been reported showing that
genetically modified T47D and MCEF7 breast cancer cells
containing mutations in estrogen receptor 1 (ESR1) (Y537S and
D538G) showed estrogen-independent growth and resistance to
fulvestrant, raloxifene, and 4-hydroxytamoxifen (4-OHT) in
vitro.'** 71 In addition to addressing existing drug resistances,
CRISPR can also be used to identify newer drug resistance
mechanisms and mutations. Chen et al. showed that, in triple-
negative breast cancer cells (HCC1937), the genetic ablation of
ATPEl, a base excision repair enzyme, led to resistance to
olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor.'**
In another study, CRISPR-based knockout of MAP3KI1 in
mutant PIK3CA breast cancer cells increased the proliferation
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Table 1. Applications of CRISPR/Cas9 in CAR-T Cell Therapy

approach to modify

reference
14
Su et al.'"*’

major outcome of the study

modifications done in CAR-T cells

CAR-T cells

Tu et al.">°

reduced expression of PD-L1 and enhanced CAR-T cytotoxicity

-T

knockout programmed death-ligand 1 (PD-L1) in primary enhanced CAR-T cytotoxicity
T cells
knockout cyclin-dependent kinase S (CDK-S) in C

immune checkpoint
blockade

cells
lymphocyte activation gene-3 (LAG3) knockout in CAR-T

Zhang et al.""

strengthened T cell response and increased cytokine production

cells
diacylglycerol kinase (DGK) knockout in CAR-T cells

CD40 ligand (CD154) expressing CAR-T cell

Jung et al.'>

stimulated CD3 signaling and increased resistance to the immunosuppressive factors TGF-f and prostaglandin E2

ale4
Jin et al.'®®

Kuhn et al.'>*
Chmielewski et

CAR-T cells attracted activated macrophages and eliminated antigen-loss tumor cells via tumor necrosis

-a mediated process

B

factor (TN
CXCR-2 expression stimulated the cohesion of CAR-T cells at the tumor site and ensured their migratory effect to the

superior antitumor effects via NF-kB pathway

IL-12 secretin,

inducible interleukin-12 (IL-12) secreting CAR-T cells

editing CAR-T cells to
improve efficiency

CXCR-2 expressing hepatocellular carcinoma (HCC)-

tumor microenvironment in HCC
TET2 disrupted CAR-T cells exhibited higher antitumor activity in vivo

targeting CAR-T cells
improving durability and  disrupted TET2 (Tet methylcytosine dioxygenase 2)

Fraietta et
156
al

promoter in CAR-T cells

safety of CAR-T cells

(GvHD).

GM.-CSF is a major contributor in development of cytokine release syndrome (CRS), a well-known side effect of CAR-T ~ Sterner et al.">*

primary T-ALL in vitro and in vivo without the induction of xenogeneic graft versus host disease

CD7 and T cell receptor alpha chain (TRAC) expression modified CAR-T cells demonstrated efficacy against human T cell acute lymphoblastic leukemia (T-ALL) cell lines and ~Cooper etal.'>’
lacking CAR-T cells, targeting T cell malignancies

cell therapy. GM-CSF KO CAR-T cells retained antitumor activity while reducing CRS.

granulocyte-macrophage colony-stimulating factor (GM-
CSF) knockout in CAR-T cells
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rate and decreased sensitivity to AZD5363 (an AKT inhibitor)
in vitro as well as in vivo."®

Inactivating Carcinogenic Viral Infections. The Interna-
tional Agency for Research on Cancer (IARC) has classified
following viruses as carcinogens after comprehensive analysis:
Epstein—Barr virus (EBV), hepatitis B virus (HBV), hepatitis C
virus (HCV), Kaposi’s sarcoma herpes virus (KSHV), human
immunodeficiency virus, type 1 (HIV-1), human T cell
lymphotropic virus, type 1 (HTLV-1), and human papilloma-
virus (HPV). EBV, HPV, HTLV-1, and KSHYV are classified as
direct carcinogens, while HBV, HCV, and HIV-1 are considered
indirect carcinogens (HBV and HCV cause chronic inflamma-
tion, and HIV-1 causes immune suppression).l(’6

CRISPR/Cas technology has a promising role in targeting E6
or E7 genes in HPV, which are responsible for inducing cervical
carcinoma. Kennedy et al. showed that the expression of a
bacterial Cas9 RNA-guided endonuclease, together with
sgRNAs specific to E6 or E7, induced cleavage of the HPV
genome, resulting from inactivating mutations (deletions and
insertions) into the E6 or E7 gene. This further induced pS3 or
retinoblastoma (Rb) protein, leading to cell cycle arrest and
eventual cell death.'®” In another study, CRISPR/Cas9 was used
to target the promoter of HPV16 E6/E7 as well as E6 and E7
transcripts resulting in significant reduction in proliferation of
cervical cancer cell line SiHa and reduced tumorigenesis in
mouse models.'*®

The CRISPR/Cas9 system could successfully treat EBV-
related cancers during the latent phase of EBV infections by
targeting EBV viral genomes.'® CRISPR/Cas9 was shown to
cause direct cleavage of the JCV genome, a small circular dsDNA
that encodes for the viral early protein, T-antigen. CRISPR/
Cas9 was used to stop viral replication in transformed human
glial cells because of the inactivation of the T-antigen-coding
genes, which are critical for directing viral reactivation and Iytic
infection.'”’

The following two approaches while not direct therapy
approaches are still important tools in translational research as
they help in understanding molecular mechanisms of various
cancerous phenotypes, providing invaluable information during
early phases of drug discovery:

Creating Tumor Models and Organoids. Transfecting of
mouse embryonic stem cells with CRISPR/Cas9, sgRNA, and
+donor template promotes homology-directed repair (HDR)
and enables development of efficient knockout or knock-in
mouse models. CRISPR/Cas9 can also be used to develop
inducible Cas9 mouse models to perform eflicient somatic
editing in vivo, with various organs as possible targets using
either adeno-associated virus- (AAVs), lentivirus-, or nano-
particle-mediated sgRNA delivery.'”' ™"

Heckl et al. used the CRISPR/Cas9 system via the lentiviral
delivery method to revive several inactivated oncogenes in
primary hematopoietic stem and progenitor cells (HSPCs) to
generate leukemia models. The targeted genes were TET2,
RUNX1, DNMT3A, NF1, EZH2, and SMC3."7*

CRISPR/Cas9 technology has also been adopted to develop
organoid tumor models. For example, organoid models for
colon cancer were constructed in vitro by using CRISPR to
introduce mutations in tumor-suppressor genes (APC, TPS3,
SMAD4, etc.) and modify oncogenes (KRAS, PI3K, etc.).'”
Roper et al.'’® established a protocol to induce site-directed
tumors rapidly and efficiently in the distal colon of mice by
utilizing colonoscopy-guided mucosal injection. This technique
can be extrapolated to deliver viral vectors carrying Cre
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Table 2. Examples of CRISPR/Cas9-Based Therapeutics As Antimicrobials

pathogen target genes of the pathogen

herpes simplex virus 1 (HSV-

Cas9

HSV-1 genome was targeted using Streptococcus pyogenes Cas9

1) (SpCas9) mRNA and viral gene-targeting gRNAs (designated

HSV-1-erasing lentiviral particles, HELP)

hepatitis B virus (HBV)

in vivo

hepatitis C virus (HCV)

polyprotein and replication of the viral RNA

human immunodeficiency
virus (HIV)

Staphylococcus aureus virulence genes and antibiotic resistance genes

Mycobacterium tuberculosis multiple genes of Mycobacterium tuberculosis
Aspergillus fumigatus

Candida albicans

Clostridium difficile
(packaged in bacteriophages)

the surface antigen (HBsAg)-encoding region of HBV, in vitro and
HCV S’ untranslated region involved in both translation of the viral

edit integrated proviral DNA (long terminal repeats region)

multiple genes of Aspergillus fumigatus, like those involved in drug
resistance or rRNA processing or other essential functions

CDRI and CDR2 (members of the multigene drug efflux pump
encoding family), responsible for drug resistance to azoles

Cas3

the genome of Clostridium difficile to create long-range deletions

major outcome of the study reference
HSV-1 replication was blocked Yin et al.'®®
HBYV replication and expression was inhibited Zhen et al.'®

HCV RNA transcription was inhibited Price et al.'”

HIV-1 expression was suppressed Ebina et al.'”!

only the virulent Staphylococcus aureus was killed. By Bikard et
targeting antibiotic resistance genes, bacteria became al.'?
more susceptible to existing treatment

sequence-specific regulatory suppression in M. tb was Choudhary et
observed al'”?

increased drug susceptibility and reduction in fungal Vyas et al.'”*

growth was observed

by knocking out CDRI and CDR2, the clinical strain of ~ Vyas et al.'"”*
Candida albicans did not show hyper-resistance to
fluconazole or cycloheximide

bacteriophages containing the targeted CRISPR/Cas3 Selle et al.'>®

system killed Clostridium difficile

recombinase, CRISPR/Cas9 components, CRISPR-engineered
mouse tumor organoids, or human cancer organoids to mice to
model the adenoma—carcinoma—metastasis sequence of tumor
progression.

Creating High-Throughput Genetic Screens. CRISPR-
based high-throughput screening is a large-scale genetic loss-
of-function experimental approach that facilitates discovery of
key genes or gene sequences that correlate with a specific
function or phenotype for a cell type, for example, resistance or
sensitivity to a drug and susceptibility to environmental toxins,
components of a cellular pathway or novel pathogenic
biomarkers.'””"”*

Recently, using CRISPR screens, a compelling lethal
interaction between the helicase-encoding WRN gene and
microsatellite instability was identified."””"*° In immuno-
oncology, the molecular mechanism of tumor immune evasion
was explored, which included multiple factors like Ras signaling,
antigen presentation, interferon, autophagy, and epigenetic
remodeling.lgl_183 In another study, a CRISPR-based screening
approach showed that depletion of neurofibromin, merlin, and
the mediator complex component MED12 conferred resistance
to vemurafenib, a B-Raf enzyme inhibitor, in B-RAF mutant
melanoma cells.'”®

In the future, CRISPR/Cas9-based efficient and precise
cancer models and high-throughput screens are likely to
significantly promote functional cancer genomics research and
accelerate the development of novel cancer therapies.

Infectious Diseases. Infectious diseases were the second
largest subset of publications in the CRISPR data set extracted
from the CAS Content Collection. A total of 25% of all journal
publications and 22% of all patent publications explicitly
mentioning diseases were related to infectious diseases. There
has been a steep increase over the past few years in number of
publications on infectious diseases and CRISPR technology,
especially marked for bacterial and viral infectious diseases
(Figure S9).

CRISPR has emerged as a promising alternative to develop
therapeutics against various pathogens by
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1. targeting the pathogen genes required for replication,
entry, or infecting the host cells or

2. altering host genes required by pathogens to cause
infection or
3. modifying genes responsible for drug resistance or
1 3. 123,184,185
susceptibility

CRISPR-based antimicrobials have a unique advantage over
other conventional antimicrobials because they can destroy
microbes based on their genomic sequence. This is particularly
useful in situations where only a small number of microbes
within a genus must be targeted and eradicated, which is tough
to do with existing antimicrobial strategies.l%’187

Table 2 enlists numerous studies conducted for exploring
CRISPR-based therapeutics as antimicrobial agents.

Blood Disorders. The delivery of genome editing machinery
by utilizing CRISPR/Cas technology to target blood cells
possesses an interesting possibility to provide cure for patients
with inherited monogenic blood diseases such as sickle cell
anemia and f-thalassemia. The first U.S. FDA-approved
CRISPR therapeutic, Casgevy, is an autologous gene therapy
that edits the BCL11A gene, which helps in production of fetal
hemoglobin. Eventually, this stops red blood cells (RBCs) from
adopting their characteristic sickle shape.'”® Other therapies for
the treatment of sickle cell anemia and f-thalassemia include
targeting the erythroid-specific enhancer region of the BCL11A
gene and HBG1/HBG2 genes and are currently undergoing
clinical trials."””

P-Thalassemia is also associated with mutations in the HBB
gene, particularly a point mutation in intron 2 that alters splicing.
Xu et al. used TALENs and CRISPR/Cas9 to target the aberrant
intron to restore HBB gene expression in induced pluripotent
stem cells (iPSCs) in vitro, creating a potential opportunity for
cell therapy through hemopoietic stem cell replacement.'””

Common and Uncommon Genetic Disorders. Among
the many promising possibilities of using CRISPR-based
therapeutics, their translational use in monogenic human
genetic diseases has the potential to provide long-term therapy
after a single treatment. Genetic disorders can be treated with
the help of CRISPR by editing the defective (disease-causing)
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gene or by editing the enhancer or regulator of the defective
gene. Numerous studies, which are summarized in the table
below (Table 3), have shown promising results by using these
two approaches.

Nervous System Disorders. While accounting for a smaller
fraction of CRISPR publications (Figure S8A), nervous system
disorders still contribute about 7 and 6% of journal articles and
patents in the field of CRISPR. Figure S10 further shows the
breakdown of publication trend across various nervous system
disorders—a key takeaway is that the rate of growth of
publications in the field of CRISPR co-occurring with
Alzheimer’s and Parkinson’s diseases has increased over the
past decade, indicating interest from both academic researchers
and commercial entities. CRISPR/Cas9 technology has gained
popularity in the field of neurodegenerative diseases due to its
short experimental duration and easy molecular engineering
requirements. It is currently being extensively utilized for
building disease models, identifying pathogenic genes through
screening, and for targeted therapy.

Alzheimer’s disease (AD) is the most prevalent neuro-
degenerative disease characterized by memory deficits and
cognitive decline. It is mainly characterized by two neuro-
pathological features—the accumulation of extracellular amy-
loid  (Af3) protein plaques and neurofibrillary tan§1es primarily
composed of hyperphosphorylated Tau protein.”*”*'? Majority
of cases of AD are known to be sporadic in nature; however, a
small percentage of cases are familial (known as familial AD or
FAD), caused by dominant autosomal mutations found in one of
three genes: presenilin-1 (PSEN1), presenilin-2 (PSEN2), and
amyloid precursor protein (APP).*'*'?

Sun et al.”" knocked out PSENI genes using CRISPR/Cas9
in mouse neuroblastoma cells and observed decreased
production of AB42 and Af40. Konstantinidis et al.*'* suggest
that the CRISPR/Cas9 approach can be used to selectively
disrupt the PSEN1M146L allele responsible for AD and partly
switch the abnormal A$42/40 ratio that leads to the develop-
ment of the disease in carriers of this mutation. Ortiz-
Virumbrales et al.>'® demonstrated that CRISPR/Cas9 can
correct neurons derived from the PSEN2N141I-mutated
individual fibroblasts and can further normalize the Af42/40
ratio. This was shown to effectively restore the associated
electrophysiological deficits.

Parkinson’s disease (PD) is the second most prevalent
neurological disorder in humans, which is characterized by the
progressive loss of dopaminergic neurons and significant
decrease in dopamine levels as well as functional impairment
of the motor circuit. Around 90% of PD cases are not linked to
any known cause, while the remaining 10% have familial PD
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caused by mutations in specific genes like a-synuclein (SNCA),
parkin RBR E3 ubiquitin protein ligase (PRKN), PTEN-induced
kinase 1 (PINKI), and leucine-rich repeat kinase 2
(LRRI{Z).216'217

The missense mutation, AlaS3Thr (AS3T) in SNCA4, is
considered to be one of the most prominent risk factors for early-
onset PD. Yoon et al.”'® conducted a study where they deleted
the AS3T-SNCA gene using CRISPR/Cas9, which significantly
improved conditions related to PD, such as the overproduction
of a-synuclein, reactive microgliosis, dopaminergic neuro-
degeneration, and PD-associated motor symptoms.

There is significant research still ongoing in identifying novel
biomarkers and mutations involved in the onset of AD and PD.
Developing disease models is critical in understanding disease
biology and pathology, and CRISPR has shown promising utility
in the same. Few of the examples are cellular model of AD with
disease-causing mutations in APP and PSEN1 2" mouse model
for AD with tau knockout,”*” and a monkey model for PD with
PINKI deletion.”*!

B CRISPR THERAPEUTICS: CANDIDATES IN THE
DEVELOPMENTAL PIPELINE

Over the past decade, CRISPR has made significant strides in
clinical research, with numerous trials launched to explore its
potential in therapeutics. As a result, in late 2023, the CRISPR-
based therapeutic, Casgevy, was granted approval becoming the
first ever in just 11 years which is truly a remarkable
achievement. Casgevy (exagamglogene autotemcel), the
CRISPR/Cas9 gene editing therapy for the treatment of
patients with transfusion-dependent f-thalassemia and the
treatment of sickle cell disease in patients aged >12 years with
recurrent vaso-occlusive crises, was approved by the UK
Medicines and Healthcare Products Regulatory Agency
(MHRA) on 16 November 2023."*° The U.S. FDA approved
Casgevy and Lyfgenia (lovotibeglogene autotemcel) for patients
with sickle cell disease on 8 December 2023."** Casgevy has also
been approved by the European Medicines Agency (EMA) for
sickle cell disease and transfusion-dependent f-thalassemia on
15 December 2023."*

To gain insights about ongoing preclinical and clinical trials
on CRISPR technology, we retrieved data from Pharmaproject
Citeline Clinical Intelligence (Figure 10). At present, there are
142 CRISPR therapeutics in different stages of development of
which 10% are in phase I, 11% in phase II, and 1% in phase III
clinical trials. A vast majority of CRISPR therapeutics (77%) are
still in the preclinical stage of development. Listed in Table S2
are examples of CRISPR therapeutics in phases I-III with
information about their gene and disease targets.
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The range of disease conditions targeted by CRISPR-based
therapeutics currently in the preclinical stages of development
are wide—from rare genetic disorders and blood diseases to
various forms of cancer and even infectious diseases such as
HIV, tuberculosis (TB), and COVID-19. The data reveals that
25% of these therapeutics are focused on cancer (Figure 11),

Anticancer

Blood and clotting
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Musculoskeletal
Alimentary/Metabolic

Neurological

Cardiovascular -
Ml Pre-clinical

Disease groups

Anti-infective CPhase |
Immunological [EPhase Il
Respiratory [Phase 1l
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Dermatological

20 30 40

0 10
Number of CRISPR-based therapeutics

Figure 11. Distribution of CRISPR-based therapeutics currently under
development among different disease groups. The stacked bar shows
the split of therapeutics among various stages of development for each
disease group.

which consists of treatment for solid tumors (60%) and
hematological malignancies (34%). CRISPR-edited CAR-T
therapies are leading (57%) against hematological malignancies.
However, some CAR-T cell therapies are also being developed
for solid tumors (43%) with the help of CRISPR technology.
Nkarta in collaboration with CRISPR Therapeutics is
developing an allogeneic chimeric antigen receptor-natural
killer (CAR-NK) cell therapy targeting CD70, using its off-the-
shelf NK cell-based technology for the treatment of solid and
hematological cancers. Other major disease groups targeted by
CRISPR-based therapeutics that are currently under exploration
include immunological (4%), respiratory (3%), and dermato-
logical (1%) diseases (Figure 11).

CRISPR-based therapeutics in preclinical and clinical trials
focused on the treatment of neurological conditions (Figure
S11) including amyotrophic lateral sclerosis (ALS), anxiety,
depression, and Alzheimer’s disease. Of these, 92% are in the
preclinical research stage and 8% in clinical trial phases (Figure
12 and Figure S11). Of the 9% of CRISPR-based therapeutics
aimed at the treatment of alimentary or metabolic diseases, 92%
are in the preclinical stage and include diseases such as
hyperoxaluria, hepatic dysfunction, inflammatory bowel disease,
type 1 diabetes, Pompe’s disease,””””** radio/chemotherapy-
induced Gl injury, and ulcerative colitis, and at present, only one
CRISPR-based therapy named CTX-211 has reached the phase
IT clinical trials for the treatment of type 1 diabetes
(NCT05565248).

Several different CRISPR-based therapies tackle infectious
diseases (7%) (Figure 11), from CRISPR-enhanced bacter-
iophages to the excision of integrated retroviruses, and even
epigenetic silencing of entire viral genomes. LBPEC-01, an anti-
infective CRISPR-based therapy in phase III clinical trial
(NCTO05488340), is a bacteriophage, under development by
Locus Biosciences, using CRISPR/Cas3 (crPhage) technology
for the treatment of urinary tract infections caused by Escherichia
coli and Klebsiella pneumoniae.”** The first-ever CRISPR therapy
for HIV, EBT-101, aims to cut the virus from the genome of
human cells using CRISPR/Cas9 and two gRNAs, delivered via
AAV9 (NCT05144386). Data presented at the 27th American
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Society of Gene & Cell Therapy (ASGCT) meeting revealed
that EBT-101 met the primary and secondary end points of
safety and biodistribution/immunogenicity, respectively. How-
ever, EBT-101 did not prevent viral rebound in three individuals
who 2sztsopped antiretroviral medication in a phase 1/2 clinical
trial.””

The Sankey charts in Figures 12 and Figure S11 depict the
breakdown of CRISPR-based therapeutics across phases of
development, broader disease groups, individual diseases, and
specific gene targets. A few key takeaways from these Sankeys are
as follows:

1. A majority of CRISPR-based therapeutics currently in the
developmental pipeline are aimed at treating cancers
ranging from solid cancers such as nonsmall cell lung
cancer (NSCLC) and hepatocellular carcinoma (HCC)
as well as hematological malignancies such as AML and
multiple myeloma (MM) among others.

. Many of the targets (35%) currently explored in
preclinical stages remain unspecified.

3. Among the specified targets, gene editing via the CRISPR
system of dystrophin is being explored to permanently
correct DMD mutations and thus restore the reading
frame, allowing for the production of functional
dystrophin and aid in the treatment of muscular
dystrophy.”*°

. Similarly, CRISPR-based strategies are also being
investigated for facioscapulohumeral muscular dystrophy
(FSHD) and merosin-deficient congenital muscular
dystrophy type 1A (MDCI1A), which are caused by the
aberrant expression of the DUX4 gene in the muscle
tissue””” and mutation in the laminin alpha 2-chain
(LAMA2) gene encoding laminin alpha 2 (Lama2)
protein, respectively.”*”

In terms of sheer number of CRISPR-based therapeutics in
the developmental pipeline, the leading organization is CRISPR
Therapeutics contributing 17% of CRISPR-based therapeutics
in preclinical and clinical development. With a focus on the
development of transformative medicines using its proprietary
CRISPR/Cas9 gene editing platform, CRISPR Therapeutics in
collaboration with Vertex Pharmaceuticals launched the first-
ever U.S. FDA-approved CRISPR-based therapy Casgevy.'”
Other key players that are actively involved in developing
CRISPR-based therapeutics include Intellia Therapeutics
(10%), followed by Arbor Biotechnologies (8%), and Chengdu
Gene Vector Biotechnology (6%), among others (Figure S12A).
Geographical distribution of companies engaged in CRISPR-
based research and development indicates that the U.S. is the
leader accounting for 46%, followed by China (14%) and
Switzerland (12%) (Figure S12B). While American universities,
research institutions, and biotech companies have spearheaded
much of the work on CRISPR technology, China has also been a
key player (14%) in applying CRISPR technology in clinical
settings.””” The country has launched a variety of clinical trials,
particularly focusing on cancer treatment using CRISPR-edited
immune cells.”*"

B CRISPR IN DISEASE DIAGNOSIS

CRISPR technology, originally harnessed for gene editing,
. . . . . 231
rapidly evolved into a powerful tool for disease diagnosis.
Its ability to detect specific genetic sequences is invaluable in
identifying infectious diseases, genetic disorders, and even
cancers. Although quantitative polymerase chain reaction

has

—233

https://doi.org/10.1021/acs.biochem.5c00480
Biochemistry 2025, 64, 4628—4660


https://pubs.acs.org/doi/suppl/10.1021/acs.biochem.5c00480/suppl_file/bi5c00480_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.biochem.5c00480/suppl_file/bi5c00480_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.biochem.5c00480/suppl_file/bi5c00480_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.biochem.5c00480/suppl_file/bi5c00480_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.biochem.5c00480/suppl_file/bi5c00480_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.biochem.5c00480/suppl_file/bi5c00480_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.5c00480?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.5c00480?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.5c00480?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.biochem.5c00480?fig=fig11&ref=pdf
pubs.acs.org/biochemistry?ref=pdf
https://doi.org/10.1021/acs.biochem.5c00480?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Biochemistry pubs.acs.org/biochemistry

Disease
name Target name
E— | vecra:2
Retinopathy: 1
Di
sease MM: 2 TNFRSF17: 2
group :
AML: 1 B IL3RA:1
. . Sensory: 2
Clinical trial Solid cancer: 2 I PIK4:1
Phases r ) I USP1: 2
- NHL: 2 '
Anticaﬁcer: 13 BC,0C,PC,BPH cancer: 1 - I CD19:3
Phase I: 14 ALL:1 >
BCL: 1 I PD-1:1
i SCC, NSCLC: 1 I socst:1
- HeFH/HoFH: 1 I ANGPTL3:1
Cardiovascular: 3 I HBB:1
] GINSCLC: 1 -
I : SCD: 4 NA: 8
Blood and clotting: 7
Phase II: 15 \ I BCL/TCL: 1
CVD NOS: 1 / 3 cD70:1
FH: 1 Lp(a): 1
) ' Sy S
Anti-infective: 3 E. coli prophylaxis: 1 N
a3 L] AN
Phase il: 2 |} = N : Thaisschoma: 3 AP I NOS: 3
Alimentary/Metabolic: 1 alassaemia:
. & o
Immunological: 1 uTl: 1 / I HBG1:1
Neurological: 1 HIV/AIDS: 1 1 KLKBT:1
T1D: 1 7R 1
HAE: 1
hATTR: 1

Figure 12. Distribution of CRISPR-based therapeutics in the clinical stages (phase L, I, and III; first column from the left) of development across
broader disease groups (second column from the left), individual diseases (third column from the left), and their biological targets (fourth column
from the left). Data retrieved from Pharmaproject Citeline Clinical Intelligence in June 2024. The names of the diseases and their targets are
abbreviated here as ALL, acute lymphocytic leukemia; AMD, age-related macular degeneration; AML, acute myeloid leukemia; ANGPTL3,
angiopoietin-like protein 3; BC, breast cancer; BCL, B-cell lymphoma; BPH, benign prostatic hyperplasia; CD19, cluster of differentiation 19; CD70,
cluster of differentiation 70; CVD, cardiovascular disease; FH, familial hypercholesterolemia; HAE, hereditary angioedema; hATTR, hereditary
transthyretin amyloidosis; HBB, hemoglobin subunit beta; HBG1, hemoglobin subunit gamma 1; HIV/AIDS, human immunodeficiency virus/
acquired immunodeficiency syndrome; IL3RA, interleukin 3 receptor alpha; KLKB1, kallikrein B1; Lp(a), lipoprotein (a); MM, multiple myeloma;
NA, not applicable; NHL, non-Hodgkin’s lymphoma; NSCLC, nonsmall cell lung cancer; NOS, not specified; OC, ovarian cancer; PC, pancreatic
cancer; PD-1, programmed death 1; Plk4, polo-like kinase 4; SCC, squamous cell carcinoma; SCD, sickle cell disease; SOCS1, suppressor of cytokine
signaling 1; TCL, T cell lymphoma; T1D, type 1 diabetes; TNFRSF17, TNF receptor superfamily member 17; TTR, transthyretin; USP1,
ubiquitination-specific proteases; UT]I, urinary tract infection; VEGF-A, vascular endothelial growth factor A.

(qPCR)-based nucleic acid detection is a gold standard method ered) set by the World Health Organizationn8 for infectious
in routine clinical practice,234’235 it relies on optimizing disease diagnostics.

numerous processes, such as DNA or RNA extraction, primer The various Cas proteins, combined with other technologies
design, amplicon detection, and data normalization.”>**37 such as biosensors, biochips, biomagnetic beads, isothermal
Isothermal amplification and next-generation sequencing amplification, lateral flow, and protein aptamers, have led to the
(NGS) are also used in routine clinical diagnostics. For development of new molecular diagnostic methods with high
comparisons between the three most prevalent molecular sensitivity, specificity, low cost, short turnaround time, and
diagnostic methods please see Table S3 in the Supporting portability in complex biological specimens.””® Most current
Information. CRISPR/Cas-mediated diagnostic assays utilize Class 2

The CRISPR/Cas system can integrate the ease of use and CRISPR/Cas systems that consist of type II (Cas9), type V
cost efficiency of isothermal amplification with the diagnostic (Casl2 and Casl4), and type VI (Cas13) CRISPR/Cas systems
accuracy of PCR for genotyping and aid in detecting cancer employing single multidomain effectors. The class 1 type I
mutations and mutations that confer resistance to antibiotics, CRISPR/Cas3 system is also emerging for nucleic acid
antiviral medicines, or cancer drugs. Additionally, the CRISPR/ detection.””* The CRISPR/Casl2a, CRISPR/Casl3a,
Cas system can fulfill the ASSURED criteria (affordable, CRISPR/Casl4a, and CRISPR/Cas3 systems depend on the
sensitive, specific, user-friendly, rapid, equipment-free, deliv- measurement of trans-cleavage activity triggered by target
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sequence recognition, ” with trans-cleavage activity being

inhibited or nonspecifically activated by target-independent
factors.””” The CRISPR/Cas9 system possesses excellent DNA
recognition capability but does not possess trans-cleavage
activity, and has been developed for biosensor-based diag-
nostics.””' 7% Only the CRISPR/Cas12a and CRISPR/Cas9
systems are available for dSDNA recognition. In this section, we
have discussed the publication landscape of CRISPR-based
disease diagnostics and briefly described their mechanisms.
Publication Landscape on CRISPR-Based Disease
Diagnostics. Our data analysis indicates more than 6,600
and 2,900 journal articles and patent publications, respectively,
on the application of CRISPR technology in disease diagnosis
from 2004 to 2024, which accounts for 17 and 21% of total
journal articles and patent publications, respectively, on
CRISPR therapeutics in CAS Content collection (Figure 13).
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Figure 13. Journal and patent publication trends on CRISPR-based
disease diagnostics from the CAS Content Collection for the period
2004 to 2024. *Note that data for 2024 is incomplete due to time of
data extraction and encompasses data for January to June.

Publication trends of CRISPR in disease diagnosis has shown a
remarkable increase in recent years, reflecting its growing
importance as a diagnostic tool in molecular biology and medical
research. The COVID-19 pandemic coincides with accelerated
use of CRISPR-based diagnostics with a notable increase in
publications (44%) between 2020 and 2022. Patent publications
on CRISPR-based disease diagnosis have also surged in recent
years, paralleling the technology’s rapid adoption in research and
clinical applications.

The publication trends on CRISPR technology and its various
Cas proteins associated with diagnosis have evolved significantly

over the past decade as the diversity of Cas systems has
expanded (Figure 14). Each Cas protein has unique properties
and has been adapted for various applications. Cas9 was the first
and most widely studied protein in CRISPR research. Early
studies predominantly focused on gene editing, but some initial
exploration of Cas9’s potential for diagnostics began in 2014
with a steady increase in publications (Figure 14B). The
discovery of Cas12 (for DNA detection) and Cas13 (for RNA
detection) led to major breakthroughs in diagnostics, especially
with the development of the SHERLOCK (Casl3-based)
(Sherlock Biosciences) and DETECTR (Cas12-based) (Mam-
moth Biosciences) platforms. Publications on CRISPR/Cas12
increased several-fold since 2019 indicating development of
accurate, fast, and scalable testing solutions. Similarly,
publications on Casl2 and Casl3 surged due to their
applications in infectious disease detection (e.g., Zika, Dengue,
and HPV), multiplexed diagnostics (e.g., influenza, HIV, and
SARS-CoV-2), and cancer. Although publications on other Cas
proteins such as Cas14 and Cas3 represent a small fraction of the
CRISPR diagnostics literature, they highlight emerging areas of
interest. Cas14 is notable for its unique ability to detect ssDNA
and dsDNA, offering enhanced versatility for developing
sensitive and specific diagnostic platforms. Cas3, known for its
ability to degrade long stretches of DNA, has been explored in
genome editing strategies that may eventually contribute to
diagnostic innovations.

The analysis of CRISPR-based disease diagnostics publica-
tions co-occurring with various diseases (Figure 15) reflects a
growing interest in both infectious and noninfectious diseases.
Viral infections in infectious diseases and cancer in non-
infectious diseases led the way with the highest number of
publications, followed by bacterial, genetic, immune, and fungal
diseases (Figure 15A). Publications on CRISPR-based disease
diagnostics co-occurring with cancer show continuous and
constant growth since 2014, whereas publications on viral
diseases show a sudden and steep spike in 2019 followed by
plateauing (Figure 15B).

The intersection of CRISPR technologies with preamplifica-
tion methods for disease diagnosis is a dynamic and rapidly
growing area of research, driven by the need for sensitive,
specific, and rapid diagnostic tools for various diseases including
infectious diseases and cancers. Many diagnostic methods based
on CRISPR require preamplification to detect low-abundance
nucleic acids. 56% of publications appear to be associated with
PCR as a preamplification technique in combination with
CRISPR diagnostics to achieve low-cost and point-of-care
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Figure 14. (A) Distribution of publications (journal and patent) based on Cas proteins—Cas9, Cas12, Cas13, Casl4, and Cas3—in publications
related to the application of CRISPR in diagnostics. (B) Year-wise distribution of publications (journal and patent) associated with various Cas
proteins in the CRISPR diagnostics subset of publications. Data includes journal and patent publications from the CAS Content Collection for the

period 2014 to 2023.
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journal and patent publications from the CAS Content Collection for the period 2004 to 2023. Abbreviations used: EXPAR, exponential amplification
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nucleic acid sequence-based amplification; PCR, polymerase chain reaction; RAA, recombinase-aided amplification; RCA, rolling circle amplification;
RPA, recombinase polymerase amplification; SDA, strand displacement amplification.

solutions. This is followed by recombinase polymerase
amplification (RPA) (18%), loop-mediated isothermal amplifi-
cation (LAMP) (7%), etc. Recent publications are also exploring
nonamplification methods (4% ), focusing on simpler, faster, and
more portable diagnostic systems (Figure 16A). Various readout
methods are used to interpret the results of CRISPR diagnostics,
ranging from simple colorimetric assays to more complex
fluorescence-based systems. Fluorescence and sequencing
readouts dominate the landscape (39 and 33% respectively),
with growing interest in lateral flow, electrochemical, colori-
metric, luminescence, and optical (Figure 16B).

Mechanisms of CRISPR/Cas-Based Diagnostics.
CRISPR/Cas-based diagnostics leverage the precise targeting
capabilities of the CRISPR/Cas system, particularly variants
such as Cas9, Cas12, Cas13, Cas14, and Cas3, to recognize and
bind to a target nucleic acid sequence followed by cleavage used
to generate a detectable signal. The key mechanisms of various
CRISPR/Cas-based platforms developed for disease diagnosis
have been described in Table S4, and details of individual
detection platforms are summarized in Tables S5—S7 with
schematics of various detection platforms depicted in Figures
S13-S16.

4643

B CRISPR: DELIVERY SYSTEMS

The ability to target and modify specific genomic sequences
holds promise for treating a myriad of genetic disorders, from
monogenic diseases to complex, multifactorial conditions. In
practice, however, CRISPR-based therapeutics must enter the
desired cells without eliciting an unwanted immune response, so
a delivery system is required. Thus, despite its transformative
potential, the therapeutic application of CRISPR faces
significant challenges, particularly in the realm of delivery
systems.”?”*>*" Effective and safe delivery of CRISPR
components—such as the Cas9 nuclease and sgRNA—to target
cells and tissues is paramount for achieving desired therapeutic
outcomes while minimizing off-target effects and immune
responses. The choice of delivery method can significantly
influence the efficiency, specificity, and safety of CRISPR-
mediated gene editing.

Carriers currently used for delivery of gene editing system
cargo fall into three general groups: (i) viral vectors, (ii) nonviral
vectors, and (iii) physical delivery (Figure 17).2**7%* Viral
vectors have been extensively studied and utilized due to their
high efficiency in delivering genetic material. Among them,
AAVs, lentiviruses, and adenoviruses are the most used. AAVs
are particularly favored for their low immunogenicity and ability
to infect both dividing and nondividing cells, making them
suitable for a wide range of tissues. Lentiviruses, derived from
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Figure 17. Schematic representation of the various CRISPR/CAS9 delivery systems. Partially created with www.BioRender.com.

HIV-1, can integrate into the host genome, providing long-term
expression of the CRISPR components. However, the potential
for insertional mutagenesis remains a concern. Adenoviruses
offer transient expression and can carry larger genetic payloads,
but their high immunogenicity can limit their use in clinical
settings. The unfavorable effects of the viral vectors such as
genome integration, immunogenetic responses, and limited
cargo loading impede further clinical applications.”*”***

Nonviral vectors, including lipid-, polymer-, or metal-based
nanocarriers and cell-penetrating peptides (CPPs), offer an
alternative approach in CRISPR delivery. Although considered
not as prominent as viral-based delivery vectors, they possess the
advantages of lower immunogenicity and toxicity, and huge
cargo size, and are a proliferating area of research.”*>**">>

Negatively charged nucleic acids can be electrostatically
complexed to cationic materials with the complexes sub-
sequently endocytosed by cells. The most successful classes of
cationic materials applied so far for nucleic acid delivery are
lipids, e.g., rationally designed lipids and lipid-like materials, and
naturally occurring and synthetic polymers. Ideally, any nonviral
delivery material for genome editing should be well tolerated—
biocompatible, nonimmunogenic, and capable of delivering
payloads to the nucleus.””'

Thus, lipid-based nanoparticles can encapsulate CRISPR
components and facilitate their delivery into cells via
endocytosis. Polymer-based systems, such as polyethylenimine
(PEI) and poly(lactic-co-glycolic acid) (PLGA) nanoparticles,
provide customizable platforms for delivering CRISPR payloads
with controlled release profiles. Nanoparticles offer unique
advantages in terms of size, surface modification, and targeting
capabilities. These nanocarriers can enhance cellular uptake and
provide protection for CRISPR components from degradation.
Exosomes, which are naturally occurring extracellular vesicles,
have garnered interest due to their inherent biocompatibility
and ability to mediate intercellular communication. Engineering
exosomes to deliver CRISPR components holds promise for

4644

achieving targeted and efficient gene editing with minimal
immunogenicity.uz*

In some cases, delivery vectors are not necessary for genome
editing. In ex vivo therapies, mechanical intervention can create
transient holes in cell membranes, allowing nucleic acids and
proteins to enter the cell. The most common physical delivery
methods include microinjection and electroporation/sonopora-
tion, while methods such as hydrodynamic delivery are currently
under development. Optimization of the in vivo CRISPR
delivery still faces multiple challenges, including encapsulation
of large size CRISPR system, targeted delivery, and enhanced
endocytosis.”>">*” In addition to gene editing, CRISPR
systems have been developed for delivery of drugs, such as
doxorubicin—e.g,, CRISPR-dCas9.>*®* Thus, based on the
potent functions of the CRISPR system for disease correction,
efficient in vivo delivery systems are urgently needed.

With regards to CRISPR/Cas9 cargoes, three forms have
been explored: (i) plasmid DNA encoding both Cas9 protein
and the sgRNA; (ii) a mixture of Cas9 mRNA and a separate
sgRNA; and (iii) a mixture of Cas9 protein and the ngNA
(Cas9 ribonucleoprotein, Cas9 RNP) (Figure 17).25972 1t i
now widely believed that the safest delivery method for CRISPR
is to deliver it as a complete RNP. By delivering the Cas enzyme
and gRNA as a preformed RNP complex, the amount of time the
complex spends in the cells is reduced, minimizing the risks of
triggerin§62an immune response or off-target editing of the
genome.

An outline of the various delivery systems for CRISPR
therapeutics is summarized in Table 4.

Viral Vectors.

1. Adeno-associated viruses (AAVs) are small viruses that
infect humans and some other primate species. They are
not known to cause disease and have a low immune
response, making them suitable for gene therapy. AAVs
can deliver genes by infecting cells and inserting the
therapeutic gene into the cell’s DNA. The limited cargo
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Figure 18. Distribution of the documents related to the various types of CRISPR delivery systems in the CAS Content Collection. Data includes
journal and patent publications from the CAS Content Collection for the period 1995—2024.

size is a significant challenge, often necessitating the use of
smaller Cas9 variants or split Cas9 systems. Non-
pathogenic, low immunogenicity, limited cargo capacity
(~5 kb), stable expression in nondividing cells.

. Lentiviruses are a type of retrovirus that can integrate
their genetic material into the host cell genome, enabling
long-term expression. They can infect both dividing and
nondividing cells and have a larger cargo capacity than
AAVs, accommodating full-size Cas9. However, their
integration into the host genome raises concerns about
insertional mutagenesis and oncogenesis. High trans-
duction efficiency, larger cargo capacity (~8 kb), long-
term expression, potential safety risks due to genome
integration.

. Adenoviruses are common viruses that cause mild
infections in humans. They can deliver large DNA
sequences and do not integrate into the host genome,
which reduces the risk of insertional mutagenesis.
However, they can elicit strong immune responses,
which can be problematic for repeated treatments.
Large cargo capacity (~8—10 kb), high efficiency,
transient expression, potential for strong immune
responses.

Nonviral Vectors.

1. Lipid nanoparticles (LNPs) are tiny vesicles composed
of lipids that can encapsulate nucleic acids, such as mRNA
or small interfering RNA (siRNA), protecting them from
degradation and facilitating cellular uptake. LNPs are
widely used for delivering RNA-based CRISPR compo-
nents and have been proven effective in recent mRNA
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vaccines. They protect RNA, facilitates uptake, low
immunogenicity, and potential toxicity at high doses.

. Polymeric nanoparticles are made from biodegradable

polymers and can carry DNA, RNA, or protein cargoes.
They can be engineered to release their payloads in a
controlled manner, targeting specific cells or tissues. Their
versatility allows for customization in design and
functionality enabling carrying of various cargo types.

. Cell-penetrating peptides (CPPs) are short peptides

that facilitate the delivery of various molecules, including
nucleic acids and proteins, across cell membranes. They
are versatile and can be conjugated with different cargoes,
though their efficiency can vary. They can deliver a variety
of cargoes, minimal toxicity, and variable efficiency.

. Gold nanoparticles can be functionalized with nucleic

acids and are used for their stability and ease of
modification. They can deliver CRISPR components
into cells effectively but are expensive and may be toxic at
high concentrations. They are biocompatible, are easily
functionalized, have effective delivery, and have high cost.

Physical Methods.

1. Electroporation involves applying an electric field to cells

to create temporary pores in their membranes, allowing
CRISPR components to enter. This method is highly
efficient but can cause significant cell damage and is less
suitable for in vivo applications. It has high efficiency, is
applicable to various cell types, and has potential cell
damage.

2. Microinjection involves directly injecting CRISPR

components into individual cells using a fine needle.
This method is precise and commonly used for creating

https://doi.org/10.1021/acs.biochem.5c00480
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Figure 19. Heatmap showing relative co-occurrences of diseases targeted by CRISPR and the delivery vectors. Listed here are diseases included within
each of the broader categories: genetic disorder—sickle cell disease, -thalassemia, and cystic fibrosis, Duchenne muscular dystrophy, and Tay-Sachs
disease; ocular diseases—Leber congenital amaurosis and retinitis pigmentosa; infectious diseases—HIV/AIDS and hepatitis B; liver diseases—
antitrypsin deficiency and hereditary tyrosinemia; cardiovascular diseases—familial hypercholesterolemia and hypertrophic cardiomyopathy;
neurological disorders—fragile X syndrome, autism spectrum disorders, amyotrophic lateral sclerosis, Huntington’s disease, and Alzheimer’s disease;
blood disorders—sickle cell disease and f-thalassemia. Data includes journal and patent publications over the period 1995—2024 from the CAS
Content Collection (AVV, adeno-associated virus; CPP, cell-penetrating peptide).

genetically modified embryos but is labor-intensive and
not scalable. It is highly precise, suitable for single-cell
applications, and labor-intensive.

. Hydrodynamic injection involves rapidly injecting a
large volume of solution into the bloodstream, usually
targeting the liver. This creates transient pores in cell
membranes, allowing CRISPR components to enter. It is
mainly used in animal models. It is simple, is efficient for
the liver, and has potential tissue damage.

. Particle bombardment (gene gun) uses high-velocity
particles (gold or tungsten) coated with CRISPR
components to deliver them into target cells. When the
particles penetrate the cell membrane, they deliver the
CRISPR cargo directly into the cytoplasm. This is
effective for plant cells and has some applications in
mammalian tissues. It is good for hard-to-transfect cells,
has potential cell damage, and lacks precision.

. Sonoporation involves ultrasound waves creating tem-
porary pores in the cell membrane, facilitating the uptake
of CRISPR components. It has been used experimentally
in tissues like muscle and tumor tissues. It has also shown
promise in delivering therapeutics across the blood—brain
barrier. It is noninvasive and limited to tissues accessible
by ultrasound.

Figure 18 shows the distribution of the documents related to
the various types of CRISPR delivery systems in the CAS
Content Collection. The largest fraction of publications concern
viral vectors, with AAVs being most represented. From the
physical delivery methods, electroporation and microinjection
appear to be more represented than the other physical methods.

Figure 19 represents a heatmap showing the relative co-
occurrences of diseases targeted by CRISPR and the delivery
vectors utilized, with a few takeaways highlighted below:

1. In general, viral vectors (AAV, lentivirus, and adenovirus)
and some nonviral vectors (LNPs and polymer nano-
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particles) have been explored more than other methods of
delivery.

2. Among the physical methods of delivery, electroporation
co-occurs to a higher extent as compared to all other
methods for most diseases except for liver diseases.

. Some of the highest correlations are between ocular
diseases and AAV, cancer and lentiviral vectors, and liver
and cardiovascular diseases and lipid nanoparticles.

B ETHICS

Doudna, one of the inventors of the CRISPR technology,
expressed in the 2016 American Association for the Advance-
ment of Science Annual Meeting that one of her biggest fears is
“waking up one morning and reading about the first CRISPR
baby, and having that create a public backlash where people ban
or regulators shut this down, and I think that could be very
detrimental to the progress of the field”.*°! In 2018, her fears
were realized when Chinese researcher He Jiankui claimed that
he used CRISPR to alter the DNA of seven embryos of couples
where the males were HIV carriers to immunize the babies
against the HIV virus. This resulted in the birth of two twin girls,
the first CRISPR babies.*****?

Beauchamp and Childress proposed four main principles of
biomedical ethics: beneficence, nonmaleficence, respect for
autonomy, and justice.””* In summary: proposed “treatment”
should result in a positive outcome/benefit (beneficence), avoid
or minimize harm as much as possible (nonmaleficence),
patients should not be treated without informed consent
(autonomy), and equitable access to treatment (justice).
When looking at applications and study of CRISPR/Cas
genome editin%, researchers should take these principles into
consideration.”” For example, under beneficence and non-
maleficence is the risk of unwanted effects such as genomic off-
target activity, immune response, age-related or disease-related
challenges that should be considered,****%” and natural genetic
diversity that could alter on-target and off-target out-
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comes.”***" Under justice, an argument is the equitable
distribution and accessibility of these expensive, but potentially
lifesaving therapies.”'” In the case of autonomy, there is the
argument of embryonic and gamete targeting vs somatic cell
targeting. There is less ethical argument when it comes to
targeting somatic cells, but the possible human beings that result
from any embryonic/gamete genetic modification would lack
informed consent as the decision to be modified was not made
by them yet would have to live with the consequences of the
modification throughout their life.*" ">

Other ethical concerns are legal regulations, the use of the
technology at home by communities without medical super-
vision (biohackers),®” and the use of CRISPR for non-
therapeutic purposes like enhancements, eugenics, and even
gene terrorists. A survey of laws, regulations, and governance
principles on genome editing in humans was also published by
the Scientific Foresight Unit of the European Parliamentary
Research Service in 2022.*"* For more information and outlook
on the ethical issues regarding the application of CRISPR
technologies, we suggest publications by Gonzalez-Avila et
al,’® Lorenzo et al,’'' Brokowski and Adli,*'* and Nada
Kubikova et al>'® as well as news articles and interviews
published by NPR,*'® MIT Technology Reviews,”'” and the
Harvard Gazette.’'®

Challenges. Despite the wide acceptance of CRISPR
technology in gene editing owing to its versatility and ease of
use, there remain certain challenges associated with it.

Off-Target Effects. In natural setting, CRISPR/Cas systems
tolerate mismatches between the gRNA and the target to a
certain extent. This is a likely evolutionary consequence to
overcome the high mutational rate of phages. However, this
property is unsought for genome engineering applications, as it
may result in the targeting and editing of off-target sites.
Numerous studies have reported off-target activity at sites
ranging from a single base mismatch to sites containing multiple
consecutive mismatches, or even nucleotide insertions or
deletions.”'”™*** Regardless of the mismatch tolerance of
CRISPR/Cas9, most potential off-target sites do not result in
dsDNA cleavage and gene editing. This might be due to existing
intrinsic checkpoints in the DNA binding and cleavage
mechanisms of Cas9."”**>*** Notably, high-throughput profil-
ing studies exploring off-target effects have shown that their
frequency is consistently lower in vivo as compared with isolated
genomic DNA.>>%3%¢

PAM Requirement. Another limitation of the technology is
the requirement for a PAM near the target site, which restricts its
targeting scope. SpCas9 is one of the most extensively used
Cas9s with a relatively short PAM recognition site —5'NGG3’
(N is any nucleotide). Theoretically, SpCas9 permits finding a
suitable target site every eight nucleotides on an average
throughout the genome. However, some genomic regions are
not easily targetable by SpCas9 due to a high A/T content.
Several naturally occurring orthologs of Cas9 with alternative
PAM specificities have been identified and adopted for gene
editing; however, many of these have even more limiting PAM
requirements.””’ >’

Packaging and Delivery. In vivo delivery of CRISPR/Cas9
into mammalian cells is generally accomplished using viral
vectors. AAVs remain the preferred choice due to their low
immunogenicity and high transduction efficiency. However,
AAVs have limited packaging capacity and, hence, it is difficult to
package the genes encoding most used Cas9 (SpCas9) and its
associated sgRNA into a single AAV vector unless compact
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promoters are used.”*”**" Another limiting factor for most gene
editing components is their safe, efficient, and targeted delivery
to the specific organ or tissue. If CRISPR/Cas9 components are
delivered in vivo via the systemic approach, they can get
degraded by circulating proteases or nucleases or get cleared by
the mononuclear phagocyte system. Furthermore, other factors
such as vascular permeability, diverse endocytosis mechanisms,
and lysosomal degradation can result in variable efficacy, which
may eventually result in suboptimal therapeutic outcomes.***

DNA Damage Toxicity. CRISPR-based gene editing relies on
introduction of DSBs, which can trigger apoptosis and growth
inhibition rather than the intended gene edit.”*’ Additionally,
large deletions spanning few kilobases/megabases and complex
genetic rearrangements have been reported in several studies
highlighting a major biosafety issue for clinical applications of
CRISPR therapy.”>**** Furthermore, multiple simultaneous off-
target edits can ultimately result in genomic rearrangements
such as inversions, deletions, and chromosomal translocations
3\235.5‘:§§§3r37DNA damage and stress response path

Immunotoxicity. Inmunogenic toxicity is a known limitation
of any gene editing technology, including CRISPR. Pre-existing
antibodies against Cas9 and reactive T cells have been identified
in humans, and Cas9 immunity has been associated with
comEromised therapeutic outcomes in various disease mod-
ol 338341

Regulatory Hurdles. Different countries have varying
regulations regarding CRISPR-based gene editing, and in
some countries, the guidelines are still under development.
Also, in most countries, one regulatory agency oversees gene
therapy while other agencies regulate genetically modified
organisms, and this creates a complex regulatory process for
CRISPR-based therapeutics. Additionally, the long-term effects
and safety of these therapeutics are not yet fully understood. All
of these factors may contribute to lengthy and complex
approvals of CRISPR-based therapeutics.

B CONCLUSIONS AND LOOKING AHEAD

Since the first use of CRISPR-based gene editing, the field has
evolved at an exceptional pace exhibiting an average growth in
publications of 54% in the past decade (2014—2023). This
sustained and extensive interest has resulted in a plethora of
publications exploring the use of CRISPR in treating hard-to-
cure diseases, disease diagnostics, and identification of genes
underlying various disorders.

A majority of leading commercial entities active in the
CRISPR space originate in the United States, while patents filed
by academic research institutions appears to slightly more evenly
divided between organizations in China and United States.
Among the various gene targets occurring in the CRISPR data
set, TPS3 emerges as the clear leader, growing drastically after
2018. Perhaps unsurprising since mutations in TPS3 have been
linked to various types of cancer. These mutations tend to be
missense mutations and present great opportunities for the use
of CRISPR/Cas technology in correcting/rectifying them.
Other notable gene targets appearing frequently include c-myc,
HBB, KRAS, and BRCAI.

A considerable number of CRISPR-related publications
appear to be connected to cancer and infectious diseases,
while other diseases such as blood, genetic, and nervous system
disorders are also explored in the context of CRISPR/Cas
technology. Within the broader category of cancer, breast
cancer, AML, liver cancer, lung cancer, and rectal cancer exhibit

https://doi.org/10.1021/acs.biochem.5c00480
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a remarkable increase in journal publications in the CRISPR
data set indicating exploration of this technology in the
treatment of or to establish critical genetic targets for these
cancer types. Among nervous system disorders, the neuro-
degenerative diseases Alzheimer’s and Parkinson’s show a
marked increase in publications, especially patents, related to
CRISPR indicative of greater commercial interest.

The use of CRISPR/Cas technology in disease diagnostics has
also seen a surge, most notably after 2019. Cas9 remains the Cas
protein of choice in CRISPR/Cas-based diagnostics with the
most number of publications associated with it, though in recent
years, Cas12 appears to be catching up, managing to exceed
Cas9 in 2023. CRISPR/Cas-based diagnostics have found
application in detecting pathogens such as Zika virus and MRSA
as well as cancer markers.

All of the research and development in the field has translated
into considerable increase in commercial interest in CRISPR-
based diagnostics and therapeutics over the past few years.
Currently, there are >140 CRISPR-based therapeutics in various
stages of clinical trials, a quarter of which appear to be for a range
of cancer subtypes. Despite the great strides that have occurred
in this field, there remain quite a few challenges in using
CRISPR/Cas technology for therapeutic purposes. Researchers
are actively engaged in developing alternative and better
approaches to overcome these limitations. Off-target effects of
CRISPR/Cas technology are being addressed by the develop-
ment of chemically modified gRNAs, high-fidelity nuclease
variants, and controlled expression of genome editor nucleases.
The PAM sequence requirement of SpCas9 restricts the scope of
targetable genomic sites; however, this issue can be addressed
using engineered variants of Cas9 with alternative or relaxed
PAM requirements or other naturally derived Cas9 orthologs,
and Casl2a enzymes. Second-generation CRISPR-based
technologies such as base editing or prime editing enable the
introduction of precise modifications independently of DSBs.
Newer packaging and delivery methods like electroporation/
nucleofection and lipid nanoparticles have great potential to
overcome existing targeted delivery problems.”**

The ongoing refinement of existing CRISPR components
continue to improve the efliciency and specificity of CRISPR-
based therapeutics. Expanding the targeting capabilities and
optimizing delivery systems continue to aid in significant
improvements in clinical outcomes. Ultimately, in the future
CRISPR-based therapeutics are likely to be developed
successfully for myriads of diseases beyond cancer.

B ASSOCIATED CONTENT

© Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.biochem.5c00480.

Brief description of methods including data scope and
analysis, discussion about CRISPR/Cas biology and
mechanism, and types of CRISPR/Cas systems; patent
activity, commercial interest in CRISPR, CRISPR in
agriculture, and Al in CRISPR; (Tables S1—S7) types of
CRISPR/Cas systems, CRISPR/Cas therapeutics cur-
rently in the developmental pipeline, CRISPR/Cas9-
mediated detection platforms, and other information;
(Figures S1 and S2) CRISPR/Cas mechanism and types
of CRISPR/Cas system; (Figure S3) patent activity;
(Figure S4) commercial activity in CRISPR; (Figure SS)
publication trends for Al in CRISPR; (Figures S6—S12)
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other data analysis related results; and (Figures S13—S16)
schematic representations of various CRISPR diagnostic
platforms (PDF)
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CRISPR-associated proteins

Cas9 ribonucleoprotein

Cas9 nickase-based amplification reaction
CRISPR-associated complex for antiviral de-
fense

CRISPR/Cas9-triggered isothermal exponen-
tial amplification reaction

CRISPR/Cas9 system-mediated G4-EXPAR
CRISPR/dCas9-mediated lateral flow nucleic
acid assay

CRISPR/Casl2a- and aTF-mediated small
molecule detector

cluster of differentiation 19

cluster of differentiation 70

cyclin-dependent kinase S

Switzerland

China

CRISPR/Casl3a signal amplification linked
immunosorbent assay

convoluted neural network

cyclic oligonucleotides

Cas3-operated nucleic acid detection
cell-penetrating peptides
CRISPR—Cas9-triggered nicking endonu-
clease-mediated strand displacement amplifica-
tion

clustered regularly interspaced short palindrom-
ic repeats

CRISPR activation/interference

CRISPR RNA

cytokine release syndrome

CRISPR-typing PCR

cardiovascular disease

deficient Cas13

dead Cas9

droplet digital RPA

DNA endonuclease-targeted CRISPR trans
reporter

diacylglycerol kinase

DNA methyltransferase

double-stranded breaks

double-stranded DNA

Epstein—Barr virus

epidermal growth factor receptor

European Medicines Agency

estrogen receptor 1

histone 3 lysine 27 methyltransferase

familial AD

food and drug administration

functional DNA

FnCas9 Editor Linked Uniform Detection
Assay

formalin-fixed, paraffin-embedded

familial hypercholesterolemia

fluorescence in situ hybridization
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FLASH

FSHD
Gal3

GI
GM-CSF

GRN
gRNA
GvHD
HAE
HARRY

hATTR

HBB

HBG1

HBV

HCC

HCR

HCV

HD

HDR
HeFH/HoFH

HELP
HEPN

HER2
HIV/AIDS

HIV-1
HPV
HSPCs
HTLV-1
IARC
IL-12
IL1R1
IL3RA
indels
iPSCs
JPN
KLKB1
KO
KRAB

KRAS
KSHV
LAG3
LAMA2
Lama2
LAMP
LCAI0
LNPs
Lp(a)
LRRK2
MDCI1A

MHRA

MIT
MM
MRSA
NA

finding low-abundance sequences by hybrid-
ization

facioscapulohumeral muscular dystrophy
galectin 3

gastrointestinal cancer
granulocyte-macrophage colony-stimulating
factor

granulin

guide RNA

graft versus host disease

hereditary angioedema

highly sensitive aptamer-regulated Casl4 R-
loop for bioanalysis

hereditary transthyretin amyloidosis
hemoglobin subunit beta

hemoglobin subunit gamma 1

hepatitis B virus

hepatocellular carcinoma

hybridization chain reaction

hepatitis C virus

histidine-aspartate

homology-directed repair
heterozygous/homozygous familial hypercho-
lesterolaemia

HSV-1-erasing lentiviral particles

higher eukaryotes and prokaryotes nucleotide-
binding

human epidermal growth factor receptor 2
human immunodeficiency virus/acquired im-
munodeficiency syndrome

human immunodeficiency virus, type 1

human papillomavirus

hematopoietic stem and progenitor cells
human T cell lymphotropic virus, type 1
International Agency for Research on Cancer
interleukin-12

interleukin receptors

interleukin 3 receptor alpha

insertions or deletions

induced pluripotent stem cells

Japan

kallikrein B1

knockout

Kriippel-associated box transcriptional repres-
sion domain

c-K;-Ras

Kaposi’s sarcoma herpes virus

lymphocyte activation gene-3

laminin alpha 2-chain

laminin alpha 2

loop-mediated isothermal amplification

leber congenital amaurosis type 10

lipid nanoparticles

lipoprotein (a)

leucine rich repeat kinase 2

merosin-deficient congenital muscular dystro-
phy type 1A

Medicines and Healthcare Products Regulatory
Agency

Massachusetts Institute of Technology
multiple myeloma

methicillin-resistant Staphylococcus aureus

not applicable
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NASBA

NASBACC
nCas9
NF-xB
NHE]
NHL

NK

NOS
NSCLC
oC
PADLOCK
PAM
PARP
PB-19

PC

PD

PD-1
PD-L1
PEI

PFS
PGRMC1
PICASSO

PINK1
PLGA
Plk4
PNA
POIROT

PRKN
PSEN1
PSEN2
qPCR

Rb

RBCs
RCasFISH

RNA-RBP
RPA

SaCas9
SCAN

SCC

SCD

sgRNA
SHERLOCK

siRNA
SNCA
SNPs
SOCS1
SpCas9
SPRINT

ssDNA
ssRNA
STOP
T1D
TALEN
T-ALL
TCL
TET2

nucleic acid sequence-based amplification
nucleic acid sequence-based amplification-
CRISPR cleavage

Cas9 nickase

nuclear factor kB

nonhomologous end joining

non-Hodgkin’s lymphoma

natural killer

not specified

nonsmall cell lung cancer

ovarian cancer

picoinjection aided digital reaction unlocking
protospacer adjacent motif

poly(ADP-ribose) polymerase

parvovirus B19

pancreatic cancer

Parkinson’s disease

programmed-deathl

programmed death-ligand 1

polyethylenimine

protospacer flanking site

progesterone receptor membrane component 1
CRISPR-based peptide display technology
called peptide immobilization by dCas9-medi-
ated self-organization

PTEN-induced kinase 1

poly(lactic-co-glycolic acid)

polo-like kinase 4

peptide nucleic acid

photoinitiated CRISPR—Casl2a system for
robust one-pot testing

parkin RBR E3 ubiquitin protein ligase
presenilin-1

presenilin-2

quantitative polymerase chain reaction
retinoblastoma

red blood cells

CRISPR/dCas9-MS2-based RNA fluorescence
in situ hybridization assay

RNA-binding proteins

recombinase polymerase amplification
Staphylococcus aureus Cas9

solid-state CRISPR/Cas12a-assisted nanopores
squamous cell carcinoma

sickle cell disease

single guide RNA

specific high-sensitivity enzymatic reporter
unlocking

small interfering RNA

a-synuclein

single-nucleotide polymorphisms

suppressor of cytokine signaling 1

Streptococcus pyogenes Cas9
SHERLOCK-based profiling of in Vitro tran-
scription

single-stranded DNA

single-strand RNA

Sherlock testing in one pot

type 1 diabetes

transcription activator-like effector nucleases

T cell acute lymphoblastic leukemia

T cell lymphoma

Tet methylcytosine dioxygenase 2

tgRNA tuned guide RNA

TNF tumor necrosis factor

TNFR1 tumor necrosis factor @ receptor

TNFRSF17  TNF receptor superfamily member 17

TRAC T cell receptor a subunit constant

tracrRNA trans-activating crRNA

TTR transthyretin

UCAD ultrasensitive CRISPR/Cas12a-based antibody
detection

UNIVERSE  universal nuclease for identification of virus
empowered by RNA-sensing

USA United States

USP1 ubiquitination-specific proteases

UTI urinary tract infection

VEGF-A vascular endothelial growth factor A
WIPO World Intellectual Patent Office
ZFN zinc finger nucleases
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